Commensurate superstructures in the $[(Ca/Sr)_2Cu_2O_3][CuO_2]_{x\approx\sqrt{2}}$ composite crystal

Ognjen Milat, Krešimir Salamon, Silvia Tomić, Tomislav Vuletić, and Tomislav Ivek Institute of Physics, Zagreb, Bijenička 46, Croatia

00-13

003-3

00-35

001-

00-55

00-1-1

003-7

002-2

00-46

002-4

000-2

004-8

00-20

Structure

Here, we present an electron microscopy and diffraction study of the nominal (Sr/Ca)₁₄Cu₂₄O₄₁ compound. We propose an alternative formula: $[(Ca/Sr)_2Cu_2O_3][CuO_2]_{x\approx\sqrt{2}}$ that better represents this incommensurate composite crystal structure. Namely, composite crystals are a class of long range ordered solids that are composed of two or more subsystems, each one with its own lattice and cell symmetry. For a series of compounds with widely used formula $(Sr/Ca)_{14}Cu_{24}O_{41}$ (Ca for Sr isostructural substitution), the constituting subsystems are: (i) $(Sr/Ca)_2Cu_2O_3$ -"ladders", and; (ii) CuO₂ - "chains" [1][2], as schematized in Figure 1. The lattices of these subsystems have common *a* and *b* parameters while being incommensurate along *c*-axis. The building unit of the *ladders* is a pair of zigzag edge-sharing CuO₄-squares that are connected along "rungs", so that the c_{Id} period is defined by the CuO₄-square diagonal, Fig. 1c. For the *chains*, the CuO₄ building units share opposite edges and the c_{Ch} period is equal to the CuO₄-square

Fig. 1. Schematic representation of the "Chain-ladder" composite crystal structure of (Sr-Ca-La)₁₄Cu₂₄O₄₁ in top view (up) and front view (down);

edge, Fig. 1b. Therefore, the c_{Ld}/c_{Ch} ratio is close to $\sqrt{2}$, so that the formula $[(Ca/Sr)_2Cu_2O_3][CuO_2]_x$ (x $\approx \sqrt{2}$) correctly displays compound`s composite structure. With increasing Ca-substitution the c_{Ld}/c_{Ch} ratio varies from 1.44 for pure $Sr_{14}Cu_{24}O_{41}$, to 1.416 for highly substituted $Sr_{0.6}Ca_{13.4}Cu_{24}O_{41}$ [3]. This is accompanied by charge (hole) redistribution between the CuO_2 -chains and the Cu_2O_3 -ladders. More holes reside in the CuO_2 chains for higher c_{Ld}/c_{Ch} ratio [4].

Reciprocal space in 4-dim notation

Our electron diffraction study of complete reciprocal space is shown in Figure 2. All spots in all relevant zones can be indexed as structural reflections according to:

 $H = ha^* + kb^* + lc_{Ld}^* + mc_{Ch}^*,$

and they need not to be assigned to some additional "exotic" modulation on top of the complex composite structure. All spots with non-zero *m*-index are more or less streaked with diffuse feature perpendicular to **c*** revealing disorder of the phase of modulation in the "chain" lattice [2]. Extinctions in the [1000]* and [0100]* zones of Figure 2, reveal the superspace symmetry of this complex composite structure.

Fig 2. Tilting series of diffraction patterns around c-axis for $[(Ca/Sr)_2Cu_2O_3][CuO_2]_{x=\sqrt{2}}$ assigned by 4 index notation: (a) - (0, 2k, 2l, 2m); (b) – (2h, 4h, 2l, 2m); (c) – (h, h, l, m); (d) -(3k, k, l, m); (e) -(2h, 0, 2l, 2m).

Fig. 3. reciprocal lattice raw of (0, 0, I, m) reflections from EDP of Fig. 2(c) indicating shifting of spots: 0046 at $q^* = 0.333c_{Ld}^*$, and $005\underline{7}$ at $q^* = 0.08c_{Ld}^*$, which could be incorrectly assigned to $3c_{Ld}$, and $12.5c_{Ld}$ superlattice cell.

Fig 4. Imaging along the [1100] zone, of the $[(Ca/Sr)_2Cu_2O_3][CuO_2]_{x\approx\sqrt{2}}$ composite crystal structure; top and bottom inset display *ladders* substructure with c_L =0.39 nm, while incommensurate modulation with $1/q_{(0011)}=0.92$ nm, is marked by arrows at right margin; no modulation commensurate either with $3c_L$, or $5c_L$, or $7c_L$ is revealed.

> Fig. 5. Series of superstuctures can be generated by apperiodic stacking of "small integer" commensurate units: 2c_{Ladd}O3c_{Ch}; 3c_{Ladd}O4c_{Ch}; 5c_{Ladd}O7c_{Ch}

Commensurate superstructures

Commensurate superstructure as revealed in HREM imaging of Fig. 4. and schematically represented in Fig. 5 (at right margin) could be revealed only for those particular values of c_{Ld}/c_{Ch} that belong to the set of integer number ratios (13/9, 10/7, 27/19, 17/12, ...), as marked by vertical lines in Fig. 6. The most prominent hypothetical commensurate superstructure should appear for the case of c_{Ld}/c_{Ch} = 7/5, corresponding to the compound`s nominal formula $(Sr/Ca)_{10}Cu_{17}O_{29}[5]$. The widely accepted notation $(Sr/Ca)_{14}Cu_{24}O_{41}$ rather masks substantial incommensurability of this composite crystal by implying the commensurate superstructure and formula $[(Sr/Ca)_2Cu_2O_3]^*[CuO_2]_{x=10/7}$, with the unique c_{Ld}/c_{Ch} ratio fixed to

10/7= 1.428571, in disagreement with the most of observations, so far. Amount of fractional charge transfer from *chains* to *ladders* strongly depends on c_{Ld}/c_{Ch} ratio (Ca/Sr substitution) [4].

[1] T. Siegrist et al., Mat. Ress. Bull. **23** (1988) 1429 [2] O. Milat et al., Acta. Cryst. A48 (1992), 618 [3] Z. Hiroi et al, Phys. Rev. **B54** (1996), 15849 [4] C. Ma et al., J. Phys.(Condensed Matter) **21** (2009) 215606 [5] K. Kato et al., Acta Cryst C44 (1988), 1881 [5] A. Rusydi, et al. PRL 97 (2006), 016403 [6] P. Abbamonte, et al. Nature **431** (2004) 1078

> Fig. 6. Relative positions of satellite spots 00<u>1</u>1, 006<u>4</u>, 00<u>7</u>5 (observed and marked close to the 000 center of the EDP in Fig. 2b), as a function of c_{Ld}/c_{Ch} ratio; vertical lines mark the small integer ratios for possible commensurate superstructures at 7/5, 13/9, 10/7, 27/19, 17/12, in the range 1.41 < c_{Ld}/c_{Ch} < 1.45

Appendix

Wigner Crystal by Resonant Sof X-ray Scattering (RSXS)

As La for Sr substitution reduces intrinsic hole-doping (six hole per formula unit in pure $Sr_{14}Cu_{24}O_{41}$), a lot of doubt has recently emerged about charge carriers ordering into a Wigner "hole crystal" on a 5 c_{Ld} or 3 c_{Ld} superlattice, as found by Resonant X-ray Scattering The "hole crystal" carrying charge and spin, was allocated onto "spin-ladder" subsystem based on an argument of being commensurate to "ladder" lattice, while not commensurate to "chain" lattice [5][6].

Fig. 7. SXRS scans and (hOl_{Ld}) map of Intensity from refs. [5] and [6], which were interpreted as revealing the "hole crystal" structure with superperiodicities $5c_{Ld}$ and $3c_{Ld}$, respectively.

Fig. 8. ED Intensity profile along the c* reciprocal lattice direction (00lm) from Fig. 3., indicating detectable intensity at the locations found in SXRS experiment [6]

Interpretation of the RSXS findings in therms of composite structure modulation

Each spot along *c** reciprocal axis shifts in position depending on the c_{Ld}/c_{Ch} ratio [3], and in particular the one assigned as 0046 at $q(0046) = 0.333c_{Ld}^{*}$, for *c_{Ld}/c_{Ch}*=1.416 in Figure 3. The SRXS intensities observed at this positions for $Sr_2Ca_{12}Cu_{24}O_{41}$ ($c_{Ld}/c_{Ch} = 1.416$) [5], was probably misinterpreted as an evidence "hole crystal" superlattice formation with triple ladder lattice periodicity: $\Lambda_3 = 3c_{Ld}$, failing to correlate it with 1/q(0046). Analogously, the SXRS intensity observed at position q=(0.200 0.009) c_{Ld}^* in pure Sr₁₄Cu₂₄O₄₁, and interpreted as an evidence of Hole Crystal (HC) formation in the ladder-subsystem due to apparently commensurate spacing $\Lambda 5=5c_{Ld}$ (=1/0.2 c_{Ld}^*), could be assigned as a modulation satellite emerging in reciprocal lattice point $00\underline{4}6$, or $005\underline{7}$ (see Fig). Namely, for the case of: $c_{Ld}/c_{Ch} =$ 1.445 these two spots coincide at: q(0046) = q(0057) =

0.222 c_{Ld}^* , while for c_{Ld}^*/c_{Ch}^* = 1.449 position for the 0046spot coincides to = $0.2c_{Ld}^*$.