Promotion of T-Pot's publications

 Young Scientists in the Protective Textiles Research
Functional Protective Textiles

SECTION 1 / Sekcija 1 Research background / Znanstveno-istraživačka podloga

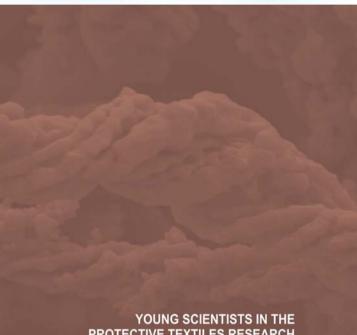
Chapter 1 / Poglavlje	1
Melita KOVAČEVIĆ	

Research as the presence and future of the University of Zagreb	1
Istraživanja kao sadašnjost i budućnost Sveučilišta u Zagrebu	5

Chapter 2 / Poglavlje 2

Drago KATOVIĆ	
Scientific research at the Faculty of Textile Technology	9
Znanstveno-istraživački rad na Tekstilno-tehnološkom fakultetu	25

Chapter 3 / Poglavlje 3


Sandra BISCHOF VUKUŠIĆ	
FP7-REGPOT-2008-1-229801: T-Pot project	39
FP7-REGPOT-2008-1-229801: T-Pot projekt	41

Chapter 4 / Poglavlje 4

Drago KATOVIĆ	
Textile Science Research Centre	43
Znanstveno-istraživački centar za tekstil	45

Chapter 5 / Poglavlje 5

Sandra BISCHOF VUKUŠIĆ	
Importance of personal protective equipment market	47
Značaj tržišta osobne zaštitne opreme	59

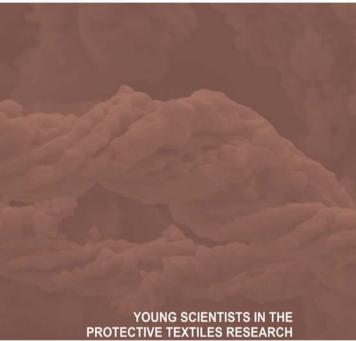
PROTECTIVE TEXTILES RESEARCH MLADI ZNANSTVENICI U ISTRAŽIVANJU ZAŠTITNIH TEKSTILIJA

SECTION 2 / SEKCIJA 2 Research papers / Istraživački radovi

Chapter 6 / Poglavlje 6

Lara KARLAVARIS, Zlatka MENCL BAJS, Antoneta TOMLJENOVIĆ	
Design of protective clothing	71
Functionaly designed summer protective shirts	75
Dizajn zaštitne odjeće	83
Funkcionalno dizajnirane ljetne zaštitne košulje	87

Chapter 7 / Poglavlje 7


Zorana KOVAČEVIĆ, Edyta BOGACZ, Malgorzata ZIMNIEWSKA,	
Sandra BISCHOF VUKUŠIĆ	
New fibers in biocomposites	95
Spanish broom – new fibre for composites	99
Nova vlakna u biokompozitima	107
Brnistra – novo vlakno za kompozite	111

Chapter 8 / Poglavlje 8

Emilija ZDRAVEVA, Natalija PEJNOVIĆ, Budimir MIJOVIĆ	
Electrospinning and protective textiles	119
Porous microstructures via electrospinning	123
Elektroispredanje i zaštitne tekstilije	131
Porozne mikrostrukture izrađene elektroispredanjem	135

Chapter 9 / Poglavlje 9

Marina TURALIJA, Sabyaschi GAAN, Sandra BISCHOF VUKUŠIĆ	
Antimicrobial protection	143
Surface modification of polylactide with silver	147
Antimikrobna zaštita	155
Površinske modifikacije polilaktida sa srebrom	159

PROTECTIVE TEXTILES RESEARCH MLADI ZNANSTVENICI U ISTRAŽIVANJU ZAŠTITNIH TEKSTILIJA

SECTION 2 / SEKCIJA 2 Research papers / Istraživački radovi

Chapter 10 / Poglavlje 10

Adriana ŠTIMAC, Antoneta TOMLJENOVIĆ, Slavica BOGOVIĆ	
Ultraviolet (UV) protection	167
Multiprotective nanofunctionalized female headwear	171
Zaštita od ultaljubičastog (UV) zračenja	179
Višenamjenska nano-obrada ženskih pokrivala za glavu	183

1

Chapter 11 / Poglavlje 11

Sandra FLINČEC GRGAC, Andrea KATOVIĆ, Drago KATOVIĆ	
Flame retardant protection	191
Application of zeolite FAU for flame retardant finishing of cellulose	195
Zaštita od gorenja	203
Primjena zeolita FAU u svrhu obrade protiv gorenja celuloze	207

Chapter 12 / Poglavlje 12

Eva MAGOVAC, Boštjan ŠUMIGA, Petra FORTE TAVČER, Sandra BISCHOF VUKUŠIĆ	
Microencapsulation for protective purposes	215
Flammability and thermal stability of cotton fabric	
microencapsulated with triphenilyl phosphate	219
Mikrokapsulacija u zaštitne svrhe	227
Gorivost i termička stabilnost pamučnih tkanina obrađenih mikrokapsuliranim trifenil fosfatom	231

Chapter 13 / Poglavlje 13

Katarina SUTON, Meliha OMEROVIĆ, Stana KOVAĆEVIĆ	
Coating for protection purposes	239
Analysis of coated polyurethane membranes	243
Naslojavanje za zaštitnu namjenu	251
Analiza naslojenih poliuretanskih membrana	255

Chapter 14 / Poglavlje 14

261
s 265
273
277

Chapter 16 / Poglavlje 16

Slavica BOGOVIĆ, Anica HURSA	
Construction of protective clothing	309
Design and construction of functional protective clothing for firefighters	313
Konstrukcija zaštitne odjeće	321
Oblikovanje i konstrukcija funkcionalne zaštitne odjeće za vatrogasce	325

Chapter 17 / Poglavlje 17

Žaklina DOMJANIĆ, Drago KATOVIĆ, Darko UJEVIĆ	
Sewing of protective clothing	333
Sewing needle damages	337
Izrada zaštitne odjeće	345
Oštećenja šivaćih igala	349

Chapter 18 / Poglavlje 18

Beti ROGINA-CAR, Drago KATOVIĆ	
Chemical protective clothing	357
Evaluation of seams resistance to chemicals	361
Protukemijska zaštitna odjeća	369
Ispitivanje otpornosti šavova na kemikalije	373

Chapter 19 / Poglavlje 19

Katia GRGIĆ, Tanja PUŠIĆ	
Functionalization in textile care processes	381
UV protection of textiles in washing process	385
Funkcionalizacija u procesima njege tekstilija	393
UV zaštita tekstilija u pranju	397

CONTENT

- 1. Lead Market Initiative
- 2. Personal Protective Equipment-Certification, Research and Future Trends
- 3. Design of Functional Protective Clothing
- 4. Construction of Functional Protective Clothing
- 5. Antimicrobial Protective Textiles
- 6. Hydrophobic & Oleophobic Protection
- 7. Textiles as Ultraviolet Radiation Protection
- 8. Flame Retardant Textiles
- 9. Thermal Protection
- 10. Protective Insulation Materials
- 11. Protection Against Microwave Radiation
- 12. Protective Clothing against Nuclear, Biological and Chemical Threats
- 13. Comfort of Protective Textiles
- 14. Care of Workwear
- 15. Recycling in the Area of High-Performance Textile Materials & Protective Clothing

FUNCTIONAL PROTECTIVE TEXTILES

Edited by Sandra Bischof Vukušić

Sveučilište u Zagrebu University of Zagreb

grebu Tekstilno - tehnološki fakultet greb Faculty of Textile Technology

Lead Market Initiative

Lutz Walter

• European Apparel and Textile Confederation (EURATEX)

Within this industry driven policy protective textiles have been selected by the European Commission as one of the 6 most important areas. The aim of this initiative is to create an innovation friendly market framework to relaunch conventional industrial sectors and reduce time of the market of new goods and services. LMI defines protective textiles as one of the most profitable markets for Europe. Since importance of this market is steadily rising every year, this particular topic has been chosen as sub-topic of T-Pot project. The majority of TTF's researchers have found their interest in the topic of either functional or protective textiles or even in both.

Personal Protective Equipment-Certification, Research and Future Trends

H. Beier, P. Franitza and R. Naumann

• Saxony Research Institute (STFI)

For producers to be able to effectively exploit the chances which have arisen not only to retain and enhance their po-sition on the local market, but also to become visible and competitive on the single European market, European norms and standards have to be complied with in the first place. This precondition is necessary, but insufficient on its own. It is also necessary to work steadily on in-novative products and their quality, and to constantly seek and use available 'technological niches'.

Design of Functional Protective Clothing

G. Dammacco, E. Turco and M. I. Glogar

 Grado Zero Espace (GZE) and University of Zagreb, Faculty of Textile Technology (TTF), Department for Textile Chemistry & Ecology

Today, modern protective clothing is expected to offer something more than protection. Besides this important basic function, clothing has to be neat and inspire motivation as well as reinforce team spirit of the workers who wear it. Even though in the past protective clothing was not expected to be very attractive, nowadays this aspect is becoming increasingly important.

Construction of Functional Protective Clothing S. Bogović

 University of Zagreb, Faculty of Textile Technology (TTF)

Construction is the first of the six requirements on which efficiency of working clothes, irrespective of its category, depends. They are: construction, material, manner of wearing, tearing, cleaning, maintenance and storage. The importance of specific design and construction is emphasized, enabling proper fit of clothes to each individual user, in different static or dynamic working conditions.

Antimicrobial Protective Textiles

S. Bischof Vukusic and S. Gaan

 University of Zagreb, Faculty of Textile Technology (TTF) and EMPA, Switzerland

This chapter provides an overview of antimicrobial agents, their mode of action, methods of protection against microbes and/or bacteria and testing of the effectiveness of antimicrobial treated textiles. This feature has potential to provide protective clothing for patients and medical workers, wound dressings, bed linen, masks, but may also be applied to sportswear particularly in terms of odour control. Antimicrobial/antibacterial activity is nowadays obtained by using different nanoparticles, such as silver or copper which have also been investigated and their effectiveness is presented by S. Bischof Vukušić from TTF and S. Gaan from Swiss Federal Laboratories for Material Testing and Research (EMPA).

Hydrophobic & Oleophobic Protection

B. Simončić

 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles

Chapter 6 presents an up-to-date status of hydrophobic and oleophobic protection. Breathability and comfort is highly desirable for workplace, sport/outdoor activities, combat situations, but also in everyday clothing. Nowadays, water-repellent and self-cleaning textiles can be obtained by nanoscale modification of the surface roughness resulting in water and dirt rolling off the surface. However, water vapor may still pass through, ensuring breathability.

Textiles as Ultraviolet Radiation Protection

A. Tomljenovic

 University of Zagreb, Faculty of Textile Technology (TTF), Department of Materials, Fibres and Textile Testing

Chapter 7 fully addresses parameters affecting the protection from UV radiation, such as the fabrics' layering and creasing, combining UV effectiveness with functional design. Functionalized textiles exhibiting UV blocking properties find wide application nowadays, mostly in protective or sport/outdoor garments. Such properties are obtained either by coating with different UV agents or by surface treatments (e.g. plasma, microwave or laser treatments). Treatments with nanoparticles of zinc oxide or titanium dioxide represent one of the first examples of applying nanotechnologies to the textile sector.

Flame Retardant Textiles

C. Q. Yang and E. D. Weil

 University of Georgia, USA and Polytechnic Institute of New York University, USA

This chapter analyses the benefits and risks of using flame retardants and discusses major trends in textile flame retardant development and production. Many nanomaterials (including titanium dioxide, silicon dioxide, clays and layered double hydroxide) have shown promise as flame retardant additives, enhancers of flame retardant coatings - effectively providing the flame resistance.

Thermal Protection

D. Rogale and S. First Rogale

 University of Zagreb, Faculty of Textile Technology (TTF), Department of Clothing Technology

Chapter 9 continues with a review of the challenges posed on clothing for thermal protection. All forms of such outwear have particularly high degree of thermal functionality, obtained either by means of construction tools, passive and active heating/cooling or by intelligent clothing. The application of nanotechnology for exceptional insulation performance, providing protection against very low or high temperatures, includes application of aerogels (nanoporous structures of amorphous silica gel). Textiles with thermal functionality are advantageous for those working in harsh environments, but also for extreme sport/outdoor activities.

Protective Insulation Materials

R. Paul, M. Brouta-Agnésa and H. Esteve Núñez

• Leitat Technological Center, Spain

Chapter 10 continues with the topic of thermal protection, but viewing it from the point of requirements laid on insulation materials. Additional environmental requirements and the problematic of toxic smokes emitted during the insulation materials combustion has been taken into the consideration and presented. The advantages of modified insulation materials, compared with the conventional ones, are addressed.

Protection against Microwave Radiation

D. Katovic

 University of Zagreb, Faculty of Textile Technology (TTF), Department for Textile Chemistry & Ecology

Chapter 11 identifies microwave radiation as one of possible environmental and health risks. The environment is now thoroughly polluted by man-made sources of electromagnetic radiation with frequencies and magnitudes never present before. Man's activities have probably changed the Earth's electromagnetic background to a greater degree than they have changed any other natural physical attribute of the Earth whether land, water or the atmosphere. The evidence now indicates that the present abnormal electromagnetic environment can constitute even health risk.

Protective Clothing against Nuclear, Biological and Chemical Threats

Z. Dragcevic, E. Vujasinovic and Z. Orehovec

 University of Zagreb, Faculty of Textile Technology (TTF) and Collonel (R) of NBC

This chapter provides an overview of chemical protective clothing with functionality against chemical toxins, toxic agents and poisonous gases. Recent functionalisation in PPE has been realised with textiles containing nanoparticles of magnesium oxide, dendrimers or gold, and have been shown as more effective than the more commonly utilised charcoal. Further novel applications include single walled carbon nanotubes (SWCNT) based sensors, developed for detection of nerve gas agents.

Comfort of Protective Textiles

M. Zimniewska

 Institute of Natural Fibers and Medicinal Plants (INFMP), Poland

Chapter 13 addresses the issue of comfortable wearing, as the second most important requirement of protective clothing. Wear comfort can be expressed, for instance, through the product's ergonomics, how easy it can be put on as well as its low weight, freedom of the user's movements and easy maintenance. The aspect of physiological comfort is worth stressing here, since protective clothing perfectly performs its basic functions today, yet the directions of its world-wide development are for clothing to be made as comfortable as possible for its users. Analysts said the industrial protective clothing that offers higher performance alongside its increased comfort and style would drive sales. The effect is already visible in the market for multifunctional clothing.

Care of Workwear

T. Pusic, I. Soljacic, S. Fijan and S. Sostar-Turk

 University of Zagreb, Faculty of Textile Technology (TTF) and University of Maribor, Faculty of Mechanical Technology, Faculty of Health Sciences

This chapter tackles the problematic of care. The accent is laid on workwear and problems which might occur upon the application of incorrect cleaning methods. The importance of validated processes for care and maintenance has been addressed as well as the importance of complying with the standards relevant to the industrial laundry and textile renting industry.

Recycling in the Area of High-Performance Textile Materials & Protective Clothing

E. Vujasinovic

 University of Zagreb, Faculty of Textile Technology (TTF), Department of Materials, Fibres and Textile Testing

Chapter 15 provides a full account of the problematic of protective clothing recycling and paradigms of proper recycling route for high-performance textiles. Recycling of the fibre reinforced composites and some particular protective clothing, e.g. body armour made of aramide fibres, have been addressed as well as future recycling trends. The need for environmentally friendly recycling or disposal technologies has nowadays become of major importance.

